DAIKIN

(1-410A

(1-410A

TABLE OF CONTENTS

II Air-cooled selection procedure

1 Selection procedure $\mathrm{VRV}{ }^{\circledR}$ III system based on cooling load 2
Indoor unit selection 2
Outdoor unit selection 2
Actual performance data 3
Selection example based on cooling load 3
2 Capacity correction ratio 5
VRV ${ }^{\circledR}$ III heat recovery small footprint combination 5
VRV ${ }^{\circledR}$ III heat recovery high COP combination 15
VRV ${ }^{\circledR}$ III heat pump small footprint combination 19
VRV ${ }^{\circledR}$ III heat pump high COP combination 32
VRV ${ }^{\circledR}$ III-S 37
3 Integrated heating capacity coefficient 39
4 Refnet pipe systems 44
5 Example of Refnet piping layouts 54
6 Refrigerant pipe selection 55
$V R V^{\circledR}$ III heat recovery small footprint combination 55
VRV ${ }^{\circledR}$ III heat recovery small fooprint combination/high COP combination 57
VRV ${ }^{\circledR}$ III heat pump small footprint combination/highCOP combination59
VRV ${ }^{\circledR}$ III-S 61
Piping thickness 62

1 Selection procedure VRV^{\circledR} III system based on cooling load

1-1 Indoor unit selection

Enter indoor unit capacity tables at given indoor and outdoor temperature.
Select the unit that the capacity is the nearest to and higher than the given load.

NOTE

1 Individual indoor unit capacity is subject to change by the combination. Actual capacity has to be calculated according to the combination by using outdoor units capacity table.

1-2 Outdoor unit selection

Allowable combinations are indicated in indoor unit combination total capacity index table.
In general, oudoor units can be selected as follows though the location of the unit, zoning and usage of the rooms should be considered.
The indoor and outdoor unit combination is determined that the sum of indoor unit capacity index is nearest to and smaller than the capacity index at 100% combination ratio of each outdoor unit. Up to 29 indoor units can be connected to one outdoor unit (18HP). It is recommended to choose a larger outdoor unit if the installation space is large enough.
If the combination ratio is higher than 100%, the indoor unit selection will have to be reviewed by using actual capacity of each indoor unit.

Indoor unit combination total capacity index table

Outdoor unit	Indoor unit combination ratio								
	130\%	120 \%	110\%	100\%	90\%	80\%	70\%	60\%	50\%
RXYSQ4PAVIRXYSQ4PAY	130	120	110	100	90	80	70	60	50
RXYSQ5PAVIVXYSQ5PAY	162.5	150	137.5	125	112.5	100	87.5	75	62.5
RXYSQ6PAVRXYSQ6PAY	182	168	154	140	126	112	98	84	70

Outdoor unit	Indoor unit combination ratio								
	130\%	120\%	110\%	100\%	90\%	80\%	70\%	60\%	50\%
RX(Y)Q5P	162.5	150	137.5	125	112.5	100	87.5	75	62.5
RX(Y)Q8P/REYQ8P8	260	240	220	200	180	160	140	120	100
RX(Y)Q10P/REYQ10P8	325	300	275	250	225	200	175	150	125
RX(Y)Q12P/REYQ12P8	390	360	330	300	270	240	210	180	150
RX(Y)Q14PA/REYQ14P8	455	420	385	350	315	280	245	210	175
RX(Y)Q16PA/REYQ16P8	520	480	440	400	360	320	280	240	200
RX(Y)Q18PA/REYQ18P8	585	540	495	450	405	360	315	270	225
RXYQ20P(A)/REYQ20P8	650	600	550	500	450	400	350	300	250
RXYQ22P(A)/REYQ22P8	715	660	605	550	495	440	385	330	275
RXYQ24P(A)/REYQ24P8	780	720	660	600	540	480	420	360	300
RXYQ26P(A)/REYQ26P8	845	780	715	650	585	520	455	390	325
RXYQ28P(A)/REYQ28P8	910	840	770	700	630	560	490	420	350
RXYQ30P(A)/REYQ30P8	975	900	825	750	675	600	525	450	375
RXYQ32P(A)/REYQ32P8	1,040	960	880	800	720	640	560	480	400
RXYQ34P(A)/REYQ34P8	1,105	1,020	935	850	765	680	595	510	425
RXYQ36P(A)/REYQ36P8	1,170	1,080	990	900	810	720	630	540	450
RXYQ38P(A)/REYQ38P8	1,235	1,140	1,045	950	855	760	665	570	475
RXYQ40P(A)/REYQ40P8	1,300	1,200	1,100	1,000	900	800	700	600	500
RXYQ42P(A)/REYQ42P8	1,365	1,260	1,155	1,050	945	840	735	630	525
RXYQ44P(A)/REYQ44P8	1,430	1,320	1,210	1,100	990	880	770	660	550
RXYQ46P(A)/REYQ46P8	1,495	1,380	1,265	1,150	1,035	920	805	690	575
RXYQ48P(A)/REYQ48P8	1,560	1,440	1,320	1,200	1,080	960	840	720	600
RXYQ50P(A)	1,625	1,500	1,375	1,250	1,125	1,000	875	750	625
RXYQ52P(A)	1,690	1,560	1,430	1,300	1,170	1,040	910	780	650
RXYQ54P(A)	1,755	1,620	1,485	1,350	1,215	1,080	945	810	675

Indoor unit capacity index

Model	20	25	32	40	50	63	71	80	100	125	200	250
Capacity index	20	25	31.25	40	50	62.5	71	80	100	125	200	250

1 Selection procedure VRV ${ }^{\circledR}$ III system based on cooling load

1-3 Actual performance data

Use outdoor unit capacity tables

Determine the correct table according to the outdoor unit model and combination ratio.
Enter the table at given indoor and outdoor temperature and find the outdoor capacity and power input. The individual indoor unit capacity (power input) can be calculated as follows:
$I C A=\frac{O C A \times I N X}{T N X}$

ICA: Individual indoor unit capacity (power input)
OCA: Outdoor unit capacity (power input)
INX: Individual indoor unit capacity index
TNX: Total capacity index

Then, correct the indoor unit capacity according to the piping length.
If the corrected capacity is smaller than the load, the size of indoor unit has to be increased. Repeat the same selection procedure.

1-4 Selection example based on cooling load

1 Given

- Design condition

Cooling: indoor $20^{\circ} \mathrm{CWB}$, outdoor $33^{\circ} \mathrm{CDB}$

- Cooling load

Room	A	B	C	D	E	F	G	H
Load (kW)	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2

- Power supply: 3-phase $380 \mathrm{~V} / 50 \mathrm{~Hz}$

2 Indoor unit selection
Enter indoor unit capacity table at:
$20^{\circ} \mathrm{CWB}$ indoor temperature
$33^{\circ} \mathrm{CDB}$ outdoor air temperature.
Selection results are as follows:

Room	A	B	C	D	E	F	G	H
Load (kW)	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2
Unit size	25	25	25	40	40	40	40	40
Capacity	3.0	3.0	3.0	4.8	4.8	4.8	4.8	4.8

3 Outdoor unit selection

- Assume that the indoor and outdoor unit combination is as follows
Outdoor unit: RXYQ10P
Indoor unit: FXCQ25M8 x 3, FXCQ40M8 x 5
- Indoor unit combination total capacity index $25 \times 3+40 \times 5=275$ (110%)

1 Selection procedure VRV ${ }^{\circledR}$ III system based on cooling load

1-4 Selection example based on cooling load

4 Actual performance data (50 Hz)

- Outdoor unit cooling capacity: 30.5kW (RXYQ10P, 110%)
- Individual capacity

Capacity of FXCQ25M	$=30.5 \times \quad \frac{25}{275}=2.77 \mathrm{~kW}$	
Capacity of FXCQ40M	$=30.5 \times \frac{40}{275}$	$=4.44 \mathrm{~kW}$

Actual combination capacity

Room	A	B	C	D	E	F	G	H
Load (kW)	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2
Unit size	25	25	25	40	40	40	40	
Capacity	2.77	2.77	2.77	4.44	4.44	4.44	4.44	

The unit size for room A has to be increased from 25 to 32 because the capacity is less than the load. For new combination, actual capacity is calculated as follows.

- Indoor unit combination total capacity index
$(25 \times 2)+31.25+(40 \times 5)=281.25(112.5 \%)$
- Outdoor unit cooling capacity:
$27,610 \mathrm{kcal} / \mathrm{h}$ (direct interpolation between 110% and 120% in the table)
- Individual capacity
Capacity of FXCQ25M $=30.0 \times \underset{281.25}{\underline{25}}=2.7 \mathrm{~kW}$
Capacity of FXCQ32M $=30.0 \times \underset{281.25}{20}=3.4 \mathrm{~kW}$
Capacity of FXCQ40M $=30.0 \times \frac{40}{281.25}=4.3 \mathrm{~kW}$

Actual capacity of new combination

| Room | A | B | C | D | E | F | G |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Load (kW) | 2.9 | 2.7 | 2.5 | 4.3 | 4.0 | 4.0 | |
| Unit size | 32 | 25 | 25 | 40 | 40 | 4 | |
| Capacity | 3.4 | 2.7 | 2.7 | 4.3 | 40 | | |

Then, the capacities have to be corrected for actual piping length according to the location of indoor and outdoor units and the distance between them.

2 Capacity correction ratio

2-1 $V R V^{\circledR}$ III heat recovery small footprint combination

REYQ8P9,REYQ22P8

- Rate of change in cooling capacity

- Rate of change in heating capacity

3D057931B

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating A/C (cooling / heating) capacity:
The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristic table or the maximum A/C capacity of outdoor units as mentioned below, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%

Maximum A./C capacity of outdoor units $=$ A/C capacity of outdoor units obtained from performance characteristics table at the 100% combination
x capacity change rate due to piping length to the farthest indoor unit
Condition: Indoor unit combination ratio exceeds 100\%
Maximum A./C capacity of outdoor units $=$ A/C capacity of outdoor units obtained from capacity characteristics table at the combination x capacity change rate due to piping length to the farthest indoor unit
4 When overall equivalent pipe length is 90 m or more, the diameter of the main liquid pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main gas and liquid pipes (outdoor unit-brach sections) must be increased.
[Diameter of above case]

*If available on the site, use this size. Otherwise, not increased
5 When the main sections of the interunit liquid pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length = Equivalent length to main pipe \times Correction factor + Equivalent length after branching Choose a correction factor from the following table.

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.3+40 \mathrm{~m}=64 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0
6 In combination wich does not include cooling onlyindoor unit.
Calculate the equivalent length pipe by the following when you calculate cooling capacity
Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.88

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units where indoor unit in inferior position
H_{M}^{ρ} : Level difference (m) between indoor and outdoor units where indoor unit in superior position
$\mathrm{L} \quad$: Equivalent pipe length (m)
α : Rate of change in cooling / heating capacity
[Diameter of pipe (standard size)]

2 Capacity correction ratio

2-1 $V R V^{\circledR}$ III heat recovery small footprint combination

REYQ10P8

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

3. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
4. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
5. Method of calculating A/C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination

> X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units $=\mathrm{A} / \mathrm{C}$ capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased. [Diameter of above case]

Model	Liquid
REYQ10P8Y1B	$\phi 12.7$

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only)
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.2}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.2+40 \mathrm{~m}=56 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp=Om}$ is thus approximately 1.0
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity.
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in cap $\overline{a c i t y}$ when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.88 .

- Explanation of symbols

$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
$H_{M}^{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in superior position.
L : Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ10P8Y1B	$\phi 9.5$

2 Capacity correction ratio

2-1 $V R V^{\circledR}$ III heat recovery small footprint combination

REYQ26,28,30,38,40,42,44P8
 REYQ12,18P9

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating A/C (cooling / heating) capacity:
The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned below, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100\%

Maximum A./C capacity of outdoor units = A/C capacity of outdoor units obtained from performance characteristics table at the 100% combination
x capacity change rate due to piping length to the farthest indoor unit
Condition: Indoor unit combination ratio exceeds 100\%
Maximum A./C capacity of outdoor units $=\underline{\text { A/C capacity of outdoor units obtained from capacity characteristics table at the combination }}$ x capacity change rate due to piping length to the farthest indoor unit
4 When overall equivalent pipe length is 90 m or more, the diameter of the main liquid pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main gas and liquid pipes (outdoor unit-brach sections) must be increased.
[Diameter of above case]

Model	Liquid	Model	Liquid	Model	Liquid
REYQ12P9Y1B	015.9	REYQ30P8Y1B	Ø22.2	REYQ44P8Y1B	Ø22.2
REYQ18P9Y1B	$\varnothing 19.1$	REYQ38P8Y1B			
REYQ26P8Y1B	Ø22.2	REYQ40P8Y1B			
REYQ28P8Y1B		REYQ42P8Y1B			

*If available on the site, use this size. Otherwise, not increased.
5 When the main sections of the interunit liquid pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length = Equivalent length to main pipe x Correction factor + Equivalent length after branching
Choose a correction factor from the following table.

Model	Correction factor	Model	Correction factor
REYQ12PY1 (B)	0.3	REYQ38P8Y1B	0.4
REYQ12P8Y1B		REYQ40P8Y1B	
REYQ18P8Y1B		REYQ42P8Y1B	
REYQ26P8Y1B	0.4	REYQ44P8Y1B	

6 In combination wich does not include cooling onlyindoor unit. Calculate the equivalent length pipe by the following when you calculate cooling capacity
Overall equivalent length $=$
Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching Example

In the above case
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.88

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units where indoor unit in inferior position
H_{M}^{p} : Level difference (m) between indoor and outdoor units where indoor unit in superior position
L : Equivalent pipe length (m)
α : Rate of change in cooling / heating capacity
[Diameter of pipe (standard size)]

Model	liquid	Model	liquid
REYQ12PY1(B)	Ø12.7	REYQ38P8Y1B	$\varnothing 19.1$
REYQ12P8Y1(B)		REYQ40P8Y1B	
REYQ18P8Y1B	$\varnothing 15.9$	REYQ42P8Y1B	
REYQ26P8Y1B	$\varnothing 19.1$	REYQ44P8Y1B	
REYQ28P8Y1B			
REYQ30P8Y1B			

2 Capacity correction ratio

2-1 $V R V^{\circledR}$ III heat recovery small footprint combination

REYQ14P8

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A / C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100\%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100\% combination

> X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased. [Diameter of above case]

Model	Liquid
REYQ14P8Y1B	$\phi 15.9$

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.3}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.3+40 \mathrm{~m}=64 \mathrm{~m}$
The correction factor in capacity $w \overline{\mathrm{hen}} \mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0.
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity.
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.96 .

- Explanation of symbols

H_{p} :Level difference (m) between indoor and outdoor units where indoor in inferior position.
H_{M} :Level difference (m) between indoor and outdoor units where indoor in superior position.
$L^{M} \quad$: Equivalent pipe length (m)
a : Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ14P8Y1B	$\phi 12.7$

2 Capacity correction ratio

2-1 VRV^{\circledR} III heat recovery small footprint combination

REYQ16P8

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating A/C (cooling / heating) capacity:
The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned below, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%

Maximum A./C capacity of outdoor units = A/C capacity of outdoor units obtained from performance characteristics table at the 100% combination x capacity change rate due to piping length to the farthest indoor unit

Condition: Indoor unit combination ratio exceeds 100\%

Maximum A./C capacity of outdoor units $=$ A/C capacity of outdoor units obtained from capacity characteristics table at the combination
x capacity change rate due to piping length to the farthest indoor unit
4 When overall equivalent pipe length is 90 m or more, the diameter of the main liquid pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main gas and liquid pipes (outdoor unit-brach sections) must be increased.
[Diameter of above case]

${ }^{*}$ If available on the site, use this size. Otherwise, not increased.
5 When the main sections of the interunit liquid pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
Example in case of REYQ18PY1

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.3+40 \mathrm{~m}=64 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0
6 In combination wich does not include cooling onlyindoor unit.
Calculate the equivalent length pipe by the following when you calculate cooling capacity
Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.88

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units where indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units where indoor unit in superior position
L : Equivalent pipe length (m)
α : Rate of change in cooling / heating capacity
[Diameter of pipe (standard size)]

Model	Liquid
REYQ16P9Y1B	Ø12.7

2 Capacity correction ratio

2-1 $V R V^{\circledR}$ III heat recovery small footprint combination

REYQ20,32,34P8

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

3. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
4. Method of calculating A/C (cooling/heating) capacity:

The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristic table or the maximum A/C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units =A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
X Capacity change rate due to piping length to the farthest indoor unit
Condition: Indoor unit combination ratio exceeds 100\%
Maximum A/C capacity of outdoor units $=\mathrm{A} / \mathrm{C}$ capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased

When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased
Diameter of above case]

Model 8	Liquid
REYQ2OP8Y1B	$\phi 19.1$
REYQ32P8Y1B	$\Phi 22.2$
REYQ34P8Y1B	

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only)

Overall equivalent length $=$ Equivalent length to main pipe $\times 0.4+$ Equivalent length after branching
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0 .
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. $\underline{\text { Overall equivalent length }}=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $H \bar{p}=0 \mathrm{~m}$ is thus approximately 0.88

Explanation of symbols

$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position
H_{M}^{p} :Level difference (m) between indoor and outdoor units where indoor in superior position
:Equivalent pipe length (m)
-Capacity correction factor

Model	Liquid
REYQ2OP8Y1B	$\phi 15.9$
REYQ32P8Y1B	$\phi 19.1$
$y n$	
REYQ34P8Y1B	

2 Capacity correction ratio

2-1 $V R V^{\circledR}$ III heat recovery small footprint combination

REYQ24P8

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

Ξ

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A / C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller

Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
\times Capacity change rate due to piping length to the farthest indoor unit
Condition: Indoor unit combination ratio exceeds 100\%.
Maximum A/C capacity of outdoor units $=$ A/C capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
[Diameter of above case]

Model	Liquid
REYQ24P8Y1B	$\phi 19.1$

When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe $\times 0.4+$ Equivalent length after branching

Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $H \overline{p=0} \mathrm{~m}$ is thus approximately 1.0
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching

Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.91 .

Explanation of symbols

$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
H_{M} :Level difference (m) between indoor and outdoor units where indoor in superior position.
L : Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ24P8Y1B	$\phi 15.9$

2 Capacity correction ratio

2-1 $V R V^{\circledR}$ III heat recovery small footprint combination

REYQ36P9

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A/C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units $=\mathrm{A} / \mathrm{C}$ capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased. [Diameter of above case]

Model	Liquid
REYQ36P9Y1B	$\phi 22.2$

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe $\times 0.4+$ Equivalent length after branching

Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $H \bar{p}=0 \mathrm{~m}$ is thus approximately 1.0 .
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching

Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.92 .

[^0]
2 Capacity correction ratio

2-1 $V R V^{\circledR}$ III heat recovery small footprint combination

REYQ46P8

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

3. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
4. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
5. Method of calculating A/C (cooling/heating) capacity:

The maximum A/C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100\%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination
\times Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
[Diameter of above case]
Model
REYQ46P8Y1B
Liquid
5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.4}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0 .
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity.

Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.88 .

[^1]
2 Capacity correction ratio

2-1 $V R V^{\circledR}$ III heat recovery small footprint combination

REYQ48P8

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A / C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A / C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units $=$ A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
x Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination
\times Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
[Diameter of above case]

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only)

Overall equivalent length $=$ Equivalent length to main pipe $\times 0.4+$ Equivalent length after branching
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $H \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.88 .

Explanation of symbols

H_{p} :Level difference (m) between indoor and outdoor units where indoor in inferior position.
H_{M} :Level difference (m) between indoor and outdoor units where indoor in superior position.
$L^{M} \quad$:Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ48P8Y1B	$\phi 19.1$

REYQ48P8Y1B $\phi 191$

2 Capacity correction ratio

2-2 VRV^{\circledR} III heat recovery high COP combination

REYHQ16P

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating A/C (cooling / heating) capacity:
The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristic table or the maximum A/C capacity of outdoor units as mentioned below, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%

Maximum A./C capacity of outdoor units = A/C capacity of outdoor units obtained from performance characteristics table at the 100% combination x capacity change rate due to piping length to the farthest indoor unit
Condition: Indoor unit combination ratio exceeds 100%
Maximum A./C capacity of outdoor units $=$ A/C capacity of outdoor units obtained from capacity characteristics table at the combination x capacity change rate due to piping length to the farthest indoor unit
4 When overall equivalent pipe length is 90 m or more, the diameter of the main liquid pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main gas and liquid pipes (outdoor unit-brach sections) must be increased.
[Diameter of above case]

*If available on the site, use this size. Otherwise, not increased.
5 When the main sections of the interunit liquid pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
Example in case of REYQ18PY1

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.3+40 \mathrm{~m}=64 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0
6 In combination wich does not include cooling onlyindoor unit.
Calculate the equivalent length pipe by the following when you calculate cooling capacity
Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.88

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units where indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units where indoor unit in superior position
L : Equivalent pipe length (m)
α : Rate of change in cooling / heating capacity
[Diameter of pipe (standard size)]

Model	Liquid
REYQ16P9Y1B	$\varnothing 12.7$

2 Capacity correction ratio

2-2 VRV^{\circledR} III heat recovery high COP combination

REYHQ2OP

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A / C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units $=$ A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%. Maximum A / C capacity of outdoor units $=\underline{A / C}$ capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit

4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased
[Diameter of above case]

Model	Liquid
REYHQ2OPY1B	$\varnothing 19.1$

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only)
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.4}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $H \overline{p=0} \mathrm{~m}$ is thus approximately 1.0
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp=0} \mathrm{~m}$ is thus approximately 0.88 .

Explanation of symbols

${\underset{H}{p}}_{H_{p}}^{H_{M}}$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
H_{M}^{p} :Level difference (m) between indoor and outdoor units where indoor in superior position.
$L^{M} \quad$: Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipe (standard size)]
Model
REYHQ2OPY1B

2 Capacity correction ratio

2-2 VRV^{\circledR} III heat recovery high COP combination

REYHQ22P

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating A/C (cooling / heating) capacity:
The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned below, whichever smaller
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%

Maximum A./C capacity of outdoor units = A/C capacity of outdoor units obtained from performance characteristics table at the 100% combination x capacity change rate due to piping length to the farthest indoor unit
Condition: Indoor unit combination ratio exceeds 100%
Maximum A./C capacity of outdoor units $=\mathrm{A} / \mathrm{C}$ capacity of outdoor units obtained from capacity characteristics table at the combination x capacity change rate due to piping length to the farthest indoor unit
4 When overall equivalent pipe length is 90 m or more, the diameter of the main liquid pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main gas and liquid pipes (outdoor unit-brach sections) must be increased.
[Diameter of above case]

*If available on the site, use this size. Otherwise, not increased
5 When the main sections of the interunit liquid pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.

Example in case of REYQ22P8Y1B

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.3+40 \mathrm{~m}=64 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0
6 In combination wich does not include cooling onlyindoor unit.
Calculate the equivalent length pipe by the following when you calculate cooling capacity
Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.88

- EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units where indoor unit in inferior position
$\mathrm{H}_{\mathrm{M}}^{\mathrm{p}}$: Level difference (m) between indoor and outdoor units where indoor unit in superior position
L : Equivalent pipe length (m)
α : Rate of change in cooling / heating capacity
[Diameter of pipe (standard size)]

Model	Liquid
REYQ8P9Y1B	$\varnothing 9.5$
REYQ22P8Y1B	$\varnothing 15.9$

2 Capacity correction ratio

2-2 VRV^{\circledR} III heat recovery high COP combination

REYHQ24P

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A / C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units $=A / C$ capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased.

When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
[Diameter of above case]

Model	Liquid
ReVH2PPYIB	

REYHQ24PY1B $\phi 19.1$
5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only)

Overall equivalent length $=$ Equivalent length to main pipe $\times 0.4+$ Equivalent length after branching
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0 .
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $H \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.91 .

Explanation of symbols

$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
$H_{M} \quad$:Level difference (m) between indoor and outdoor units where indoor in superior position.
$L \quad$:Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYHQ24PY1B	$\Phi 15.9$

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ5P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio \times Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio \times Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYQ5P	19.1	9.5

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ5P	15.9	9.5

6 Equivalent length used in the above figures is based upon the following equivalent length
equivalent piping length $=$
equivalent length of main pipe $\times \underline{\text { correction factor }}+$ equivalent length of branch pipes \times correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{mx0.5}+40 \mathrm{mx1.0}=80 \mathrm{~m}$ (Heating) Overall equivalent length $=80 \mathrm{mx1.0}+40 \mathrm{mx1.0}=120 \mathrm{~m}$

The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.78
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ8P8

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units $=\underline{\text { Capacity of outdoor units from capacity table at } 100 \% \text { connection ratio } \mathrm{X} \text { Correction ratio of piping to farest indoor }}$ Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio X Correction ratio of piping to farest indoor
$4 \frac{\text { When level difference is } 50 \mathrm{~m} \text { or more }}{}$ and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYQ8P8	22.2	12.7

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ8P8	19.1	9.5

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length $=$
equivalent length of main pipe \times correction factor + equivalent length of branch pipes \times correction factor
Choose the correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$ (Heating) Overall equivalent length $=80 \mathrm{mx} 1.0+40 \mathrm{mx} 1.0=80 \mathrm{~m}$

The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.86
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ10P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio X Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units $=$ Capacity of outdoor units from capacity table at installed\% connection ratio X Correction ratio of piping to farest indoor
$4 \frac{\text { When level difference is } 50 \mathrm{~m} \text { or more }}{}$ and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYQ10P	25.4^{*}	12.7

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ10P	22.2	9.5

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length $=$
equivalent length of main pipe X correction factor + equivalent length of branch pipes X correction factor Choose the correction factor from the following table.
ling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{mx} \times .5+40 \mathrm{mx} 1.0=80 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.87
Heating capacity when height difference $=0$ is thus approximately 0.90

2 Capacity correction ratio

2-3 VRV^{\circledR} III heat pump small footprint combination

RXYQ12,14,24,36P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio \times Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio \times Correction ratio of piping to farest indoor
4 must be increased. For new diameters, see below.

Model	gas	liquid
RXYQ12	28.6	15.9
RXYQ14P	28.6	15.9
RXYQ24P	34.9	19.1
RXYQ36P	41.3	22.2

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ12	28.6	12.7
RXYQ14P	28.6	12.7
RXYQ24P	34.9	15.9
RXYQ36P	41.3	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length $=$
equivalent length of main pipe \times correction factor + equivalent length of branch pipes \times correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{mx} 1.0+40 \mathrm{mx} 1.0=120 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{mx0} .5+40 \mathrm{mx1.0}=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.89
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ16P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units $=\underline{\text { Capacity of outdoor units from capacity table at } 100 \% \text { connection ratio }} \times \underline{\text { Correction ratio of piping to farest indoor }}$ Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units $=$ Capacity of outdoor units from capacity table at installed\% connection ratio X Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYQ16P	31.8^{*}	15.9

* If not available on site, do not increasse. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ16P	28.6	12.7

6 Equivalent length used in the above figures is based upon the following equivalent length
equivalent piping length $=$
equivalent length of main pipe \times correction factor + equivalent length of branch pipes \times correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:

(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.88
Heating capacity when height difference $=0$ is thus approximately 0.99

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ18,22,28,30,38,40,42,44P(8)

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio \times Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio \times Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYQ18	31.8	19.1
RXYQ26-30P(8)	38.1	22.2
RXYQ38-44P(8)	41.3	22.2

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual)

Model	gas	liquid
RXYQ18P	28.6	15.9
RXYQ26-30P(8)	34.9	19.1
RXYQ38-44P(8)	41.3	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length
equivalent piping length $=$
equivalent length of main pipe X correction factor + equivalent length of branch pipes \times correction factor
Choose the correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{mx} 1.0+40 \mathrm{mx} 1.0=120 \mathrm{~m}$ (Heating) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{mx} 1.0=80 \mathrm{~m}$

The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.83
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRV^{\circledR} III heat pump small footprint combination

RXYQ20,32,34P(8)

Correction ratio for cooling capacity

Correction ratio for heating capacity

3TW31472-1

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio X Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units $=$ Capacity of outdoor units from capacity table at installed\% connection ratio X Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYQ20P8 *	31.8	19.1
RXYQ32-34P*	38.1	22.2

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ20P8*	28.6	15.9
RXYQ32-34P	34.9	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length $=$
equivalent length of main pipe X correction factor + equivalent length of branch pipes x correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$ (Heating) Overall equivalent length $=80 \mathrm{mx} 1.0+40 \mathrm{mx} 1.0=80 \mathrm{~m}$

The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.88
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ22P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units $=\underline{\text { Capacity of outdoor units from capacity table at } 100 \% \text { connection ratio } \mathrm{X} \text { Correction ratio of piping to farest indoor }}$ Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio X Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections must be increased. For new diameters, see below.

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ22P	28.6	15.9

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length =
equivalent length of main pipe X correction factor + equivalent length of branch pipes x correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$ (Heating) Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$

The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.88
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ46P

Correction ratio for cooling capacity

Correction ratio for heating capacity

3TW31472-1
NOTES
1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio \times Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio \times Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ46P	41.3	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length $=$
equivalent length of main pipe \times correction factor + equivalent length of branch pipes \times correction factor Choose the correction factor from the following table

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{mx} 1.0+40 \mathrm{mx} 1.0=120 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.83
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ48P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio \times Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds $\mathbf{1 0 0 \%}$
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio X Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ48P	41.3	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length
equivalent piping length $=$
equivalent length of main pipe X correction factor + equivalent length of branch pipes \times correction factor
Choose the correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m} \times 1.0=120 \mathrm{~m}$ (Heating) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{mx} 1.0=80 \mathrm{~m}$

The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.83
Heating capacity when height difference $=0$ is thus approximately 0.92

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ50P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio X Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio \times Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYQ50P	41.3	22.2

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ50P	41.3	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length $=$
equivalent length of main pipe X correction factor + equivalent length of branch pipes x correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m} \times 1.0=120 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{mx} 1.0=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.83
Heating capacity when height difference $=0$ is thus approximately 0.92

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ52P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio \times Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio \times Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYQ52P	41.3	22.2

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ52P	41.3	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length
equivalent piping length =
equivalent length of main pipe X correction factor + equivalent length of branch pipes x correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{mx} 1.0=120 \mathrm{~m}$ (Heating) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{mx} 1.0=80 \mathrm{~m}$

The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.83 Heating capacity when height difference $=0$ is thus approximately 0.88

2 Capacity correction ratio

2-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination

RXYQ54P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio X Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units $=\underline{\text { Capacity of outdoor units from capacity table at installed\% connection ratio } \mathrm{X} \text { Correction ratio of piping to farest indoor }}$
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYQ54P	41.3	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length
equivalent piping length $=$
equivalent length of main pipe \times correction factor + equivalent length of branch pipes \times correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m} \times 1.0=120 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.83
Heating capacity when height difference $=0$ is thus approximately 0.83

2 Capacity correction ratio

2-4 VRV^{\circledR} III heat pump high COP combination

RXYHQ12,14,24,36P(8)

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES
1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions). Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio \times Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio \times Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYHQ12P8	28.6	15.9
RXYHQ24P	34.9	19.1
RXYHQ36P	41.3	22.2

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYHQ12P8	28.6	12.7
RXYHQ24P	34.9	15.9
RXYHQ36P	41.3	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length =
equivalent length of main pipe X correction factor + equivalent length of branch pipes \times correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{mx} 1.0=120 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.89
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-4 VRV^{\circledR} III heat pump high COP combination

RXYHQ16P

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio \times Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio \times Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYHQ16P	31.8^{*}	15.9

* If not available on site, do not increasse. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYHQ16P	28.6	12.7

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length $=$
equivalent length of main pipe X correction factor + equivalent length of branch pipes \times correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:

(Cooling) Overall equivalent length $=80 \mathrm{mx0.5}+40 \mathrm{mx1.0}=80 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{mx} 1.0+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.88
Heating capacity when height difference $=0$ is thus approximately 0.99

2 Capacity correction ratio

2-4 \quad VRV ${ }^{\circledR}$ III heat pump high COP combination

RXYHQ18,26,28,30P

Correction ratio for cooling capacity
Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio X Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio X Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYHQ18P	31.8	19.1
RXYHQ26-30P	38.1	22.2

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYHQ18P	28.6	15.9
RXYHQ26-30P	34.9	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length
equivalent piping length $=$
equivalent length of main pipe X correction factor + equivalent length of branch pipes \times correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{mx1.0}+40 \mathrm{mx1.0}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{mx} 1.0=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.83
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-4 VRV^{\circledR} III heat pump high COP combination

RXYHQ20,32,34P(8)

Correction ratio for cooling capacity

Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio X Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio X Correction ratio of piping to farest indoor
4 When level difference is 50 m or more and equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit - branch sections) must be increased. For new diameters, see below.

Model	gas	liquid
RXYHQ20P8* *	31.8	19.1
RXYHQ32-34P*	38.1	22.2

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

Model	gas	liquid
RXYHQ20P8	28.6	15.9
RXYHQ32-34P*	34.9	19.1

6 Equivalent length used in the above figures is based upon the following equivalent length
equivalent piping length $=$
equivalent length of main pipe X correction factor +equivalent length of branch pipes \times correction factor Choose the correction factor from the following table.

When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$ (Heating) Overall equivalent length $=80 \mathrm{mx} 1.0+40 \mathrm{mx} 1.0=80 \mathrm{~m}$

The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.88
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-4 VRV^{\circledR} III heat pump high COP combination

RXYHQ22P

Correction ratio for cooling capacity
Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions, there is only a minor deviation for the capacity correction ratio, shown in the above figures
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units.
The macimum capacity of the system will be either the total capacity of the indoor units or the macimum capacity of the outdoor units as mentioned below, whichever is smaller
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at 100% connection ratio X Correction ratio of piping to farest indoor Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units = Capacity of outdoor units from capacity table at installed\% connection ratio X Correction ratio of piping to farest indoor must be increased. For new diameters, see below.

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual)

Model	gas	liquid
RXYHQ22P	28.6	15.9

6 Equivalent length used in the above figures is based upon the following equivalent length equivalent piping length $=$
equivalent length of main pipe X correction factor + equivalent length of branch pipes x correction factor
Choose the correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case:
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{mx} 0.5+40 \mathrm{mx} 1.0=80 \mathrm{~m}$
The rate of change in:
Cooling capacity when height difference $=0$ is thus approximately 0.88
Heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-5 VRV ${ }^{\circledR}$ III-S

RXYSQ4,5PAV1/PAY1

- Rate of change in cooling capacity

- Rate of change in heating capacity

3D045710D

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max, capacity for combination with standard indoor unit)
Cooling/Heating Capacity = Cooling/Heating Capacity obtained from performance characteristics table \times each capacity rate of change In the case length of piping differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: Cooling/Heating Capacity $=$ Cooling/Heating Capacity of each unit \times capacity rate of change for each piping length
<As for RXYMQ4, 5MV4A * RXYSQ4, 5MV7V3B * RXYMQ4,5MVLT * RXYMQ4,5PV4A * RXYMQ4P,5PVE *RXYMQ4P,5PVE *RXYSQ4, 5P7V3B * RXYSQ4,5P7Y1B * RXYSQ4,5PA7V1B * RXYSQ4,5PA7Y1B>
4 When overall equivalent pipe length is 90 or more, the diameter of the main gas pipes (Outdoor unit-branch sections) must be increased. [Diameter of above case]

	gas	liquid	
RXYMQ4,5MV4A	RXYMQ4,5PV4A, VE		
RXYSQ4,5M7V3B	RXMQ4,5PVE		
RXYMQ4,5MVLT	RXYSQ4,5P7V3B	$\varnothing 19.1$	Not Increased
RXYSQ4,5P7Y1B	RXYSQ4,5PA7V1B		
	RXYSQ4,5PA7Y1B		

5 When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. $\underline{\text { Overall equivalent length }=(\text { Equivalent length to main pipe) } \times \underline{0.5}+(\text { Equivalent length after branching) }) ~}$
Example: RXYMQ4, 5MV4A

> RXYSQ4, 5MV7V3B

RXYMQ4,5MVLT
RXYMQ4,5PV4A, VE
RXYMQ4P,5PVE
RXYSQ4, 5P7V3B
RXYSQ4,5P7Y1B
RXYSQ4,5PA7V1B
RXYSQ4,5PA7Y1B>

In the above case
Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.78 .

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units where indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units where indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor
[Diameter of pipes]

Model	gas	liquid
RXYMQ4,5MV4A		
RXYSQ4,5M7V3B		
RXYMQ4,5MVLT		
RXYMQ4,5PV4A, VE		
RXMQ4,5PVE	$\emptyset 19.1$	Not Increased
RXYSQ4,5P7V3B		
RXYSQ4,5P7Y1B		
RXYSQ4,5PA7V1B		
RXYSQ4,5PA7Y1B		

2 Capacity correction ratio

2-5 VRV ${ }^{\circledR}$ III-S

RXYSQ6PAV1/PAY1

- Rate of change in cooling capacity
- Rate of change in heating capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max, capacity for combination with standard indoor unit)
Cooling/Heating Capacity = Cooling/Heating Capacity obtained from performance characteristics table x each capacity rate of change In the case length of piping differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: Cooling/Heating Capacity = Cooling/Heating Capacity of each unit \times capacity rate of change for each piping length
< As for RXYMQ6MV4A * RXYSQ6MV7V3B * RXYMQ6MVLT * RXYMQ6PV4A * RXYMQ6PVE * RXYMQ6PVE *RXYSQ6P7V3B * RXYSQ6P7Y1B * RXYSQ6PA7V1B * RXYSQ6PA7Y1B>
4 When overall equivalent pipe length is 90 or more, the diameter of the main gas pipes (Outdoor unit-branch sections) must be increased. [Diameter of above case]

	Model	gas	liquid
RXYMQ6MV4A	RXYMQ6PV4A, VE		
RXYSQ6M7V3B	RXMQ6PVE		
RXYMQ6MVLT	RXYSQ6P7V3B		
RXYSQ6P7Y1B	RXYSQ6PA7V1B		Not Increased
	RXYSQ6PA7Y1B		

5 When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. Overall equivalent length $=(\underline{\text { Equivalent length to main pipe) }} \times \underline{0.5}+$ (Equivalent length after branching)
Example: RXYMQ6MV4A

```
RXYSQ6MV7V3B
RXYMQ6MVLT
RXYMQ6PV4A, VE
RXYMQ6PVE
RXYSQ6P7V3B
RXYSQ6P7Y1B
RXYSQ6PA7V1B
RXYSQ6PA7Y1B>
```


In the above case
Overall equivalent length $=80 \mathrm{~m} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.86 .

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units where indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units where indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor
[Diameter of pipes]

Model	gas	liquid
RXYMQ6MV4A		
RXYSQ6M7V3B		
RXYMQ6MVLT		
RXYMQ6PV4A, VE		
RXMQ6PVE		
RXYSQ6P7V3B		
RXYSQ6P7Y1B		
RXYSQ6PA7V1B		
RXYSQ6PA7Y1B		

3 Integrated heating capacity coefficient

REYQ-P8/P9

INTEGRATED HEATING CAPACITY COEFFICIENT

The heating capacity tables do not take account of the reduction in capacity, when frost has accumulated or while the defrosting operation is in progress. The capacity values, which take these factors into account, in other words, the integrated heating capacity values, can be calculated as follows:

Formula:
Integrated heating capacity = A
Value given in table of capacity characteristics $=B$
Integrated correction factor for frost accumulation $=\mathrm{C}$
$A=B \times C$

Correction factor for finding integrated heating capacity

Inlet port temperature of heat exchanger (${ }^{\circ} \mathrm{C} /$ RH 85%)		-7	-5	-3	0	3	5	7
Integrating correction factor for frost accumulation	REYQ8, 10, 12P	0,97	0,95	0,90	0,86	0,87	0,92	1,0
	REYQ14, 16P	0,96	0,94	0,89	0,85	0,86	0,91	1,0
	REYHQ16, 20~24P	0,99	0,97	0,92	0,88	0,89	0,94	1,0
	REYQ18~32P	0,99	0,97	0,92	0,88	0,89	0,94	1,0
	REYQ34~48P	0,98	0,96	0,91	0,87	0,88	0,93	1,0

I NOTE

1 The figure shows that the integrated heating capacity expresses the integrated capacity for a single cycle (from defrost operation to defrost operation) in terms or time.

Please note that, when there is an accumulation of snow against the outside surface of the outdoor unit heat exchanger, there will always be a temporary reduction in capacity, although this will of course vary in degree in accordance with a number of other factors, such as the outdoor temperature (${ }^{\circ} \mathrm{CDB}$), relative humidity (RH) and the amount of frosting which occurs.

3 Integrated heating capacity coefficient

REYHQ-P

INTEGRATED HEATING CAPACITY COEFFICIENT

The heating capacity tables do not take account of the reduction in capacity, when frost has accumulated or while the defrosting operation is in progress. The capacity values, which take these factors into account, in other words, the integrated heating capacity values, can be calculated as follows:

Formula:
Integrated heating capacity = A
Value given in table of capacity characteristics $=B$
Integrated correction factor for frost accumulation $=\mathrm{C}$
$A=B \times C$

Correction factor for finding integrated heating capacity

Inlet port temperature of heat exchanger (${ }^{\circ} \mathrm{C} /$ RH 85\%)	-7	-7	-3	0	3	5	7	
Integrating correction factor for frost accumulation	REYHQ16,20~24P	0,99	0,97	0,92	0,88	0,89	0,94	1,0

3TW30322-3A

NOTE

1 The figure shows that the integrated heating capacity expresses the integrated capacity for a single cycle (from defrost operation to defrost operation) in terms or time.

Please note that, when there is an accumulation of snow against the outside surface of the outdoor unit heat exchanger, there will always be a temporary reduction in capacity, although this will of course vary in degree in accordance with a number of other factors, such as the outdoor temperature (${ }^{\circ} \mathrm{CDB}$), relative humidity (RH) and the amount of frosting which occurs.

3 Integrated heating capacity coefficient

RXYQ5-54P(8)

INTEGRATED HEATING CAPACITY COEFFICIENT

The heating capacity tables do not take account of the reduction in capacity, when frost has accumulated or while the defrosting operation is in progress The capacity values, which take these factors into account, in other words, the integrated heating capacity values, can be calculated as follows:

Formula:
Integrated heating capacity = A
Value given in table of capacity characteristics $=B$
Integrating correction factor for frost accumulation (kW) $=\mathrm{C}$
$A=B \times C$

Integrating correction factor for finding integrated heating capacity

Note

1 The figure shows that the integrated heating capacity expresses the integrated capacity for a single cycle (from defrost operation to defrost operation) in terms or time.

Please note that, when there is an accumulation of snow against the outside surface of the outdoor unit heat exchanger, there will always be a temporary reduction in capacity, although this will of course vary in degree in accordance with a number of other factors, such as the outdoor temperature (${ }^{\circ} \mathrm{CDB}$), relative humidity (RH) and the amount of frosting which occurs.

3 Integrated heating capacity coefficient

RXYHQ12-36P8

INTEGRATED HEATING CAPACITY COEFFICIENT

The heating capacity tables do not take account of the reduction in capacity, when frost has accumulated or while the defrosting operation is in progress. The capacity values, which take these factors into account, in other words, the integrated heating capacity values, can be calculated as follows:

Formula:
Integrated heating capacity = A
Value given in table of capacity characteristics = B
Integrating correction factor for frost accumulation (kW) $=\mathrm{C}$
$A=B \times C$

Integrating correction factor for finding integrated heating capacity

Inlet port temperature of heat exchanger (${ }^{\circ} \mathrm{C} / \mathrm{RH} 85 \%$)	-7	-5	-3	0	3	5	7
Integrating correction factor for frost accumulation	0.96	0.93	0.87	0.81	0.83	0.89	1.0

Note

1 The figure shows that the integrated heating capacity expresses the integrated capacity for a single cycle (from defrost operation to defrost operation) in terms or time.

Please note that, when there is an accumulation of snow against the outside surface of the outdoor unit heat exchanger, there will always be a temporary reduction in capacity, although this will of course vary in degree in accordance with a number of other factors, such as the outdoor temperature (${ }^{\circ} \mathrm{CDB}$), relative humidity (RH) and the amount of frosting which occurs.

3 Integrated heating capacity coefficient

RXYSQ4,5PAV/PAY1

Integrated heating capacity coefficient
The heating capacity tables do not take account of the reduction in capacity, when frost has accumulated or while the defrostin
The capacity values, which take these factors into account, in other words, the integrated heating capacity values, can be calc
g operation is in progress.

Formula:
Integrated heating capacity $=A$
Value given in table of capacity characteristics = B
Integrating correction factor for frost accumulation $(\mathrm{kW})=\mathrm{C}$
$A=B \times C$
Correction factor for finding integrated heating capacity

Inlet port temperature of heat exchanger (${ }^{(} \mathrm{C} / \mathrm{RH} 85 \%$)	-7	-5	-3	0	3	5	7
Integrating correction factor for frost accumulation	0.88	0.86	0.8	0.75	0.76	0.82	1.0

NOTE

1 The figure shows that the integrated heating capacity expresses the integrated capacity for a single cycle (from defrost operation to defrost operation) in terms or time.

Please note that, when there is an accumulation of snow against the outside surface of the outdoor unit exchanger, there will a reduction in capacity, although this will of course vary in degree in accordance with a number of other factors, such as the ou relative humidity (RH) and the amount of frosting which occurs.

Iways be a temporary tdoor temperature $\left({ }^{\circ} \mathrm{CDB}\right)$,

4 Refnet pipe systems

4 Refnet pipe systems

	LIQUID SIDE JUNCTION	DISCHARGE GAS SIDE JUNCTION	SUCTION GAS SIDE JUNCTION

				(3)

4 Refnet pipe systems

4 Refnet pipe systems

2TW29119-1

4 Refnet pipe systems

	LIQUID SIDE JUNCTION	DISCHARGE GAS SIDE JUNCTION	SUCTION GAS SIDE JUNCTION
com			
彦			

4 Refnet pipe systems

	LIQUID SIDE JUNCTION	DISCHARGE GAS SIDE JUNCTION	SUCTION GAS SIDE JUNCTION
\|l			

				(2)

	(1)		3		(1)	
	(4)		(5)		(5)	
	(7)		(8)		(9)	
	(1)		(10		(4)	
	(17)		(14)		(5)	
	(6)		(0)		(19)	
	(9)				(21)	

4 Refnet pipe systems

		\square	$\underset{\sim}{\text { x }}$
			\square ®
	즞	\approx	$\underbrace{2}_{\square}$ $\underset{ভ}{\triangle}$
$\left\|\begin{array}{c} \tilde{\sim} \\ \underset{U}{U} \\ \underset{O}{0} \\ \underset{\sim}{2} \end{array}\right\|$			
			$\underset{\sim}{x}$
	VLOOL IZZWOHHg	VLISIdZZWȮH8	

4 Refnet pipe systems

		䓂 - 男	-	
Reducers - Expanders			anter	
	*L06WEZWOHH8	*LLELW\&ZWO.H8		

4 Refnet pipe systems

5 Example of Refnet piping layouts

Type of fiting	Sample systems
Distribution by REFNET joints and headers	

6 Refrigerant pipe selection

6-1 VRV^{\circledR} III heat recovery small footprint combination

6 Refrigerant pipe selection

6-1 VRV^{\circledR} III heat recovery small footprint combination
REYQ8,12P9, REYQ10,14,16P8

Pipe size selection For an outdoor unit multi installation (REYQ18~48 + REYHQ16~24), select the pipe size in accordance with the following figure.	A. Piping between outdoor unit and refrigerant branch kit Choose from the following table in accordance with the outdoor unit total capacity type, connected downstream.				B. Piping between refrigerant branch kit and BSHR unit Pipe size for direct connection to indoor unit must be the same as the connection size of indoor unit. Choose from the following table in accordane with the indoor unit total capacity type, connected downstream.			
	Outdoor unit capacity type (Hp)	Piping outer diameter size (mm)						
		Suction gas pipe	HP/LP gas pipe	Liquid pipe	Indoor unit capacity type	Piping outer diameter size (mm)		
						Suction gas pipe	HP/LP gas pipe	Liquid pipe
	10	22.2	19.1	9.5	< 150			
	12	28.6	19.1	12.7	$150 \leq x<200$	19.1	15.9	9.5
	$14+16$	28.6	22.2	12.7	$200 \leqslant x<290$	22.2	19.1	9.5
	Choose from the following	ble in accordance with	he capacity type of th	nnected outdoor unit.	$420 \leqslant x<640$ $640 \leqslant x<920$	34.9	28.6	19.1
					≥ 920	41.3	28.6	19.1
	Outdoor unit	Piping outer diam	er size (mm)					
	apacity type (HP)	Suction gas pipe	HP/LP gas pipe					
	$\frac{20,25,32,40,50}{63,80,100,125}$	12.7	6.4					
	200	19.1	9.5					
	250	22.2	9.5					
How to calculate the additional refrigerant to be charged Additional refrigerant to be charged $\mathbf{R}(\mathbf{k g})$ R should be rounded off in units of $0.1 \mathbf{k g}$	$\left[\begin{array}{l} \mathbf{R}=\left[\left(\mathrm{X}_{1} \times \varnothing 22.2\right) \times 0.37\right]+\left[\left(\mathrm{X}_{2} \times \text { Ø19.1 }\right) \times 0.26\right]+\left[\left(\mathrm{X}_{3} \times \varnothing 15.9\right) \times 0.18\right]+ \\ \quad\left[\left(\mathrm{X}_{4} \times \text { Ø12.7 }\right) \times 0.12\right]+[(\mathrm{X} \times \text { Ø9.5 }) \times 0.059]+[(\mathrm{X} \times \text { Ø6.4) } \times 0.022] \end{array}\right] \times 1.02+3.6+\mathbf{A}$				$\begin{array}{lc} & \text { A } \\ \geq 100 \% & \mathbf{0 . 5} \mathrm{~kg} \\ \leq 130 \% & \end{array}$			
The refrigerant charge of the system must be less than 100 kg . This means that in case the calculated refrigerant charge is equal to or more than 100 kg you must divide your multiple outdoor system into smaller independent systems, each containing less than 100 kg refrigerant charge. For factory charge, refer to the unit name plate.								

6 Refrigerant pipe selection

6-2 VRV^{\circledR} III heat recovery small fooprint combination/high COP combination
REYQ18-48P8/9
REYHQ-P

4PW48463-1

6 Refrigerant pipe selection

6-2 $\mathrm{VRV}^{\circledR}{ }^{\circledR}$ II heat recovery small fooprint combination/high COP combination

REYQ18-48P8/9
 REYHQ-P

4PW48461-1

6 Refrigerant pipe selection

6-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination / high COP combination

6 Refrigerant pipe selection

6-3 VRV ${ }^{\circledR}$ III heat pump small footprint combination / high COP combination

6 Refrigerant pipe selection
 6-4 VRV ${ }^{\circledR}$ III-S

6 Refrigerant pipe selection

6-5 Piping thickness

Piping diameter	Material	Minimum thickness $[\mathrm{mm}]$
$\varnothing 6.4$	0	0.8
$\varnothing 9.5$	0	0.8
$\varnothing 12.7$	0	0.8
$\varnothing 15.9$	0	0.99
$\varnothing 19.1$	$1 / 2 \mathrm{H}$	0.8
$\varnothing 22.2$	$1 / 2 \mathrm{H}$	0.8
$\varnothing 25.4$	$1 / 2 \mathrm{H}$	0.88
$\varnothing 28.6$	$1 / 2 \mathrm{H}$	0.99
$\varnothing 31.8$	$1 / 2 \mathrm{H}$	1.10
$\varnothing 34.9$	$1 / 2 \mathrm{H}$	1.21
$\varnothing 38.1$	$1 / 2 \mathrm{H}$	1.32
$\varnothing 41.3$	$1 / 2 \mathrm{H}$	1.43

:O : annealed
$1 / 2 \mathrm{H}$: half-hard
For half hard pipes the maximum allowed tensile stress is $61 \mathrm{~N} / \mathrm{mm}^{2}$. For this reason the 0.2% proof strength of the half hard pipe shall be minimum $61 \mathrm{~N} / \mathrm{mm}^{2}$.
The bending radius is more than or equal to 3 times the diameter of the pipe.

Daikin's unique position as a manufacturer of air conditioning equipment, compressors and refrigerants has led to its close involvement in environmental issues. For several years Daikin has had the intension to become a leader in the provision of products that have limited impact on the environment. This challenge demands the eco design and development of a wide range of products and an energy management system, resulting in energy conservation and a reduction of waste

Naamloze Vennootschap Zandvoordestraat 300
B-8400 Oostende, Belgium
www.daikin.eu
BTW: BE 0412120336
RPR Oostende

Daikin Europe N.V. is approved by LRQA for its Quality Management System in accordance with the ISO9001 standard. ISO9001 pertains to quality assurance regarding design, development, manufacturing as well as to services related to the product.

ISO14001 assures an effective environmental management system in order to help protect human health and the environment from the potential impact of our activities, products and services and to assist in maintaining and improving the quality of the environment.

Daikin units comply with the European regulations that guarantee the safety of the product.

VRV ${ }^{\text {p }}$ products are not within the scope of the Eurovent cerification programme.

The present publication is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe N.V.. Daikin Europe N.V. has compiled the content of this publication to the best of its knowledge. No express or implied warranty is given for the completeness, accuracy, express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe N.V. explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use
and/or interpretation of this publication. All content is copyrighted by Daikin and/or interpretation of this publication. All content is copyrighted by Daikin
Europe N.V..

[^0]: Explanation of symbols
 H_{p} :Level difference (m) between indoor and outdoor units where indoor in inferior position.
 $H_{M} \quad$ Level difference (m) between indoor and outdoor units where indoor in superior position.
 L : Equivalent pipe length (m)
 a :Capacity correction factor
 [Diameter of pipe (standard size)]

 | Model | Liquid |
 | :--- | :---: |
 | REYQ36PYY1B | $\varnothing 19.1$ |

[^1]: Explanation of symbols
 H_{p} :Level difference (m) between indoor and outdoor units where indoor in inferior position.
 H_{M} :Level difference (m) between indoor and outdoor units where indoor in superior position.
 $\mathrm{L} \quad$: Equivalent pipe length (m)
 a : Capacity correction factor
 [Diameter of pipe (standard size)]

 | Model | Liquid |
 | :--- | :--- |

 REYQ46P8Y1B ф19.1

